ANNELATED 14π -ELECTRON SYSTEMS. THE SYNTHESIS OF A DIMETHYLBISDEHYDRO[14]ANNULENO[c]THIOPHENE, -[b]THIOPHENE AND -[b]FURAN ¹

Richard R. Jones, Julian M. Brown, and Franz Sondheimer (Received in UK 6 October 1975; accepted for publication 9 October 1975) Chemistry Department, University College, Gordon Street, London WClH OAJ.

Syntheses of the annelated dimethylmonodehydro[12]annulenes 1, 2, 3, and 4, containing a macrocyclic (4<u>n</u>)-membered ring, were described in the preceding Communication.^{1,2} It was

desirable to make analogous annelated dehydro[14]annulenes, in which the macrocyclic ring is $(4\underline{n}+2)$ -membered. Syntheses of the dimethylbisdehydro[14]annuleno[\underline{c}]furan $\underline{6}^{3,4}$ and the dimethyl benzobisdehydro[14]annulene 7⁵ have been reported previously. In order to complete the series and make comparisons with 1-4, we have now prepared the dimethylbisdehydro[14]annuleno[c]thiophene 5 and $-\left[\underline{b}\right]$ furan 9, as well as the dimethylbisdehydro[14]annuleno[\underline{b}] thiophene 8.

Treatment of 3,4-bis(bromomethyl)thiophene ⁶ with 2.3 mol equiv of PPh, in DMF at 80° for 3 hr yielded 97% of thiophene-3,4-bis(methylenetriphenylphosphonium bromide), mp ca 295° dec. 7 Reaction of this salt with BuLi (2 mol equiv) in THF at -65° to -20° and treatment of the resulting bisylid with "cis"-3-methylpent-2-en-4-yn-1-al 8 (ca 2.3 mol equiv) at -20° to 40° led to 28% ^{9a} of the di-trans compound <u>10</u> as cream coloured crystals, mp 98-99° dec.⁷ Oxidative coupling of <u>10</u> with cupric acetate in pyridine at 50-55° gave 60% 9a of the

dimethylbisdehydro[14]annuleno[c]thiophene 5^{10a} as golden needles, mp 182° dec; <u>m/e</u> 262; λ_{max} (CHCl₅) 296 sh (ϵ 27,000), 318 (37,000), 401 nm (4500); ¹H-nmr (CDCl₅, 100 MHz, 27°) τ 2.32 (s, H^X), 3.29 (m, H^B, H^C), 3.63 (d, $\underline{J} = 15.5$ Hz, H^A), 7.87 (s, CH₅). The nmr assignments of 5 were confirmed by the spectrum of dideuterio-5 (D instead of H^B), prepared from thiophene-3,4-bis(methylenetriphenylphosphonium bromide) and monodeuterio-"<u>cis</u>"-3-methylpent-2-en-4-yn-1-al (CDO instead of CHO), ¹¹ and subsequent oxidative coupling.¹²

Thiophene-2,3-dicarboxaldehyde ¹³ was converted to the bisvinylogue <u>12</u>, mp 189-190° ^{7,9b} in 30% yield by the method of Cresp, Sargent, and Vogel.¹⁴ The dialdehyde <u>12</u> was then transformed to the dimethylbisdehydro[14]annuleno[<u>b</u>]thiophene <u>8</u> ^{10b} in 18% yield via the crude diols <u>14</u> and <u>16</u>, essentially as described by Cresp and Sondheimer ⁴ for the [<u>c</u>]furan <u>6</u>. Compound <u>8</u> formed scarlet needles, mp 169-170°;^{9a} <u>m/e</u> 262.081 (calcd. 262.082); λ_{max} (Et₂0) 260 (ϵ 10,100), 273 (11,400), <u>ca</u> 317sh (46,500), 332 (71,900), 343 (82,900), 392 (11,800), 418 (5100), 463 (520), 504 (345), 545 nm (115); ¹H-nmr (CDCl₅, 100 MHz, 27°) τ 2.08 (d, <u>J</u> = 5.5 Hz, H^X), 2.41 (dd, <u>J</u> = 16, 8 Hz, H^B or H^{B'}), 2.50 (d, <u>J</u> = 5.5 Hz, H^Y), 2.54 (dd, <u>J</u> = 16, 8 Hz, H^{B'} or H^B), 2.55 (m, H^C, H^{C'}), ¹⁵ 7.23 (broad d, <u>J</u> = 16, H^A, H^{A'}), 7.41 (s, CH₅, CH₅').

Furan-2,3-dicarboxaldehyde ¹⁶ was similarly converted to the bisvinylogue <u>13</u> (29% yield, mp 192-193°),^{7,9b} which was transformed to the dimethylbisdehydro[14]annuleno[<u>b</u>]furan 9 ^{10c} in 15% yield via the diols <u>15</u> and <u>17</u>. Compound 9 formed orange needles, mp 134-135°;^{9a} <u>m/e</u> 246.104 (calcd 246.105); λ_{max} (Et₂0) 327 (£ 62,300), 384 (8600), 404 (6500), 411sh (6200), 456sh (730), 501 (520), 545 nm (240); ¹H-nmr (CDCl₃, 100 MHz, 64°) τ 2.22 (d, <u>J</u> = 2.2 Hz, H^Y), 2.25 (broad d, <u>J</u> = 9 Hz, H^C, H^{C'}), 2.76 (d, <u>J</u> = 2.2 Hz, H^X), 4.26 (dd, <u>J</u> = 16, 9 Hz, H^B or H^{B'}), 4.90 (dd, <u>J</u> = 16, 9 Hz, H^{B'} or H^B), 6.11 (d, <u>J</u> = 16 Hz, H^A or H^{A'}), 6.47 (d, <u>J</u> = 16 Hz, H^{A'} or H^A), 7.38 (s, CH₃, CH₃').

The 2,3-disubstituted thiophene <u>18</u> and furan <u>19</u>, required as models, were obtained from <u>14</u> and <u>15</u> by conversion to the dimesylates and treatment with 1,5-diazabicyclo[4.3.0]non-5ene.⁴ The stereochemistry of <u>18</u> (yellow needles, which decomposed on attempted mp determination) ^{7,9b} and <u>19</u> (yellow needles, mp 83-84°)^{7,9a} was established by nuclear Overhauser experiments, and oxidative coupling with cupric acetate in pyridine at 55-60° to <u>8</u> and <u>9</u>, respectively, in <u>ca</u> 15% yield.

The <u>trans</u> double bonds of 5 appear to be conformationally mobile on the ¹H-nmr time scale, as those of 6, ³ although the spectrum was essentially unchanged on cooling to -80°. On the other hand, the <u>trans</u> double bonds of 8 seem to be fixed in the indicated conformation, even at a temperature as high as 85°, in view of the chemical shifts of H^A , $H^{A'}$ (τ 7.18) and H^B , $H^{B'}$ (τ 2.54) at this temperature, and the spectrum was essentially unchanged on cooling to -65°. The <u>trans</u> double bonds of 2 apparently are fixed in the indicated conformation at low temperature, in view of the relative chemical shifts of H^A , $H^{A'}$ and H^B , $H^{B'}$. The ¹H-nmr spectrum of 2 showed a classical temperature dependence: the H^A , $H^{A'}$ and H^B , H^B' resonances appeared respectively at τ 7.35 and <u>ca</u> 2.5 at -72°, coalesced at <u>ca</u> -25°, appeared as broad multiplets at τ 6.20, 6.64 and 4.32, 4.97 at 27°, and sharpened to the above mentioned patterns at 64°.

The ¹H-nmr resonances of the external H^{C} and CH, protons in 5, 6, 7, 8, and 9 are given in Table 1, together with those of the tetraalkylated bisdehydro[14]annulene 21 ¹⁷ and the "open" models of type <u>10</u>, <u>11</u>, ³ <u>18</u>, <u>19</u>, and <u>20</u>. ⁵ All the bisdehydro[14]annulenes are clearly diatropic, the ring current of the macrocycle being reduced in the order tetraalkylannulene <u>21</u> > annuleno[b]furan 9 > annuleno[b]thiophene 8 > benzannulene 7 > annuleno[c]thiophene 5 4 annuleno[c]furan 6. This is the same order as found for the reduction of paratropicity in the alkylated and annelated monodehydro[12]annulenes of type <u>1-4</u> ¹ and is presumably a reflection of a decrease in the importance of different participating Kekulé structures of the macrocyclic rings in these substances.

Compound	н ^С	CH,	
<u>21,</u> alkyl	1 .7 6	7.09	
<u>9</u> , [<u>b</u>]furan	2.23	7.37	
8, [b]thiophene	2.55	7.41	
<u>7</u> , benzo	2.92	7.64	
<u>5</u> , [<u>c</u>]thiophene	3.29	7.87	
<u>6</u> , [<u>c</u>]furan	3.28	7.94	
<u>10, 11, 18-20,</u> models	3.51-3.62	7.98-8.04	

<u>Table 1</u>. H^{C} and CH_{3} ¹H-Nmr Resonances of Annelated and Alkylated Bisdehydro[14]annulenes, and of their "Open" Models, in CDC1, at 100 MHz, 27° (τ Values; Internal Standard, TMS).

It is also of interest to note the effect on the ¹H-nmr resonances of the 6π -systems caused by annelation of the macrocyclic rings.¹⁸ It can be seen from Table 2 that, compared with the "open" models, fusion of a paratropic 12π -ring shifts the thiophene, furan, and benzene proton resonances to higher field, whereas fusion of a diatropic 14π -ring shifts them to lower field.

Series	[<u>c</u>]Thiophene	[<u>c</u>]Furan	Benzo v v		[b]Thiophene	$\begin{bmatrix} b \end{bmatrix}$ Furan $\overline{\mathbf{v}}$ \mathbf{v}	
	Ha	НŢ	H	H	H ^A H ¹	Н	H
[12]	<u>1</u> , 3.01	<u>2</u> . 2.79	<u>3,</u> 2.92	2,92	-	<u>4</u> , 3.94	2.91
Model	<u>10</u> , 2.68	<u>11</u> , 2.47	<u>20,</u> 2.47	2.78	<u>18,</u> 2.92 2.79	<u>19</u> , 3.37	2.63
[14]	<u>5</u> , 2.32	<u>6</u> , 2.18	<u>7</u> , 1.75	2.49	<u>8,</u> 2.08 2.50	<u>9</u> , 2.76	2.22

<u>Table 2</u>. Thiophene, Furan, and Benzene ¹H-Nmr Resonances of Annelated Monodehydro[12]annulenes, Bisdehydro[14]annulenes, and of their "Open" Models, in CDC1, at 100 MHz, 27° (τ Values; Internal Standard, TMS).

<u>Acknowledgments</u>. We thank the Science Research Council and the Royal Society for financial support, the Australian National University for a Travelling Scholarship (to J.M.B.), and Hoffmann-La Roche, Basel, for a gift of "<u>cis</u>"-3-methylpent-2-en-4-yn-1-ol.

REFERENCES AND NOTES

- Unsaturated Macrocyclic Compounds. CXVI. For part CXV, see R.H. Wightman and F. Sondheimer, preceding Communication.
- 2. No particular conformation is implied in these and the other annelated dehydroannulene formulae in this Communication, unless otherwise indicated.
- 3. P.J. Beeby, R.T. Weavers, and F. Sondheimer, <u>Angew. Chem</u>. <u>86</u>, 163 (1974).
- 4. T.M. Cresp and F. Sondheimer, J. Amer. Chem. Soc. 97, 4412 (1975).
- 5. R.T. Weavers and F. Sondheimer, Angew. Chem. 86, 167 (1974).
- R. Helmers, J. Prakt. Chem. 314, 334 (1972). We prepared this compound in 30% yield by bromination of 3,4-dimethylthiophene with N-bromosuccinimide (W. Koller and P.J. Garratt, private communication).
- 7. The ¹H-nmr spectra, as well as the mass spectra or elemental analyses of all new pure compounds were in accord with the assigned structures.
- 8. E.R.H. Jones and B.C.L. Weedon, J. Chem. Soc. 937 (1946); I.M. Heilbron, E.R.H. Jones, and M. Julia, <u>ibid.</u> 1430 (1949). We prepared this aldehyde most conveniently by oxidation of "cis"-3-methylpent-2-en-4-yn-1-ol in CH₂Cl₂ with MnO₂.
- 9. Isolated by chromatography on (a) Al₂O₃ (Woelm, act. III); (b) SiO₂ (Woelm, act. III).
- IUPAC name: (a) 7,12-dimethyl-8,9,10,11-tetradehydrocyclotetradeca[c]thiophene; (b) 7,12dimethyl-8,9,10,11-tetradehydrocyclotetradeca[b]thiophene; (c) 7,12-dimethyl-8,9,10,11tetradehydroxycyclotetradeca[b]furan.
- 11. R.L. Wife and F. Sondheimer, J. Amer. Chem. Soc. 97, 640 (1975).
- Full experimental details of the synthesis of 5 and dideuterio-5 (D instead of H^B) are given by J.M. Brown, Ph.D. thesis, University of London, 1975.
- See D.W.H. MacDowell and T.B. Patrick, <u>J. Org. Chem.</u> <u>31</u>, 3592 (1966); U. Michael and S. Gronowitz, <u>Acta Chem. Scand.</u> <u>22</u>, 1353 (1968).
- 14. T.M. Cresp, M.V. Sargent, and P. Vogel, J. Chem. Soc. Perkin Trans I 37 (1974).
- 15. The H^C, H^{C'} resonance showed Nuclear Overhauser enhancement on irradiation of CH, CH, .
- Prepared from 2,3-dibromofuran by a modification of the method of M. Zaluski, M. Robba, and M. Bonhomme, <u>Bull. Soc. Chim. France</u> 1838 (1970).
- 17. R.H. Wightman and F. Sondheimer, unpublished experiments.
- 18. See D. Cremer and H. Günther, Justus Liebigs Ann. Chem. 763, 87 (1972).